A Clustering System For YouTube Channel Classification

Deniz Qian Bradley Huang

dg2024@nyu.edu brad.huanglnyu.edu sh6210@nyu.edu

Abstract

In this paper, we propose an unsupervised
YouTube channel classification system based
on the content of the channels. We extract dif-
ferent numbers of keywords and their weights
from the video scripts of 225 channels and use
the Word2Vec technique to generate embed-
dings for each keyword. We generate clusters
with the similarity scores between all channels
with different threshold values. We conduct
quantitative analysis and qualitative analysis
based on a manually tagged label baseline sys-
tem and a predefined YouTube label baseline
system. Finally, our analysis shows that our
system has the best performance when more
keywords are used for each channel and a lower
threshold value is applied when calculating the
similarity score.

1 Introduction

Online video sharing and streaming platforms have
become a large part of the 21st century. YouTube,
being one of the leading platforms, has grown ex-
ponentially since its initial launch in 2005. The
platform is home to millions of channels that pro-
duce content that covers a wide array of categories.
As the platform continues to grow, users often strug-
gle to find channels that align with their interests
due to a mass amount of videos covering various
topics. Upon creation of a new YouTube channel,
content creators are tasked with choosing one of 15
categories to describe the type of content they will
publish. However, many of them steer away from
this initial choice. This causes their newer videos
to be filtered into incorrect categories on third party
platforms that users use to search for new content
creators. This problem calls for an efficient and
scalable solution to categorize YouTube channels
in order to improve a user experience with regards
to content discovery.

In this project, we developed a system to cluster

Daniel Ni
dn2212@nyu.edu

Shenyi Huang

similar YouTube channels based on a channel’s
most popular videos’ transcripts. By organizing
the channels into clusters, our project enables users
to avoid surfing through millions of channels to
find content, but rather can observe a cluster that
suits their interests and find new content creators
from it.
Our primary contributions are as follows:

* We describe a general framework for our
YouTube channel categorization that relies on
multiple methodologies and implementations
(see section 3).

* We assess the quality of our clusters by provid-
ing a qualitative analysis of our final graphs
by comparing different graphs that were cre-
ated using different numbers of keywords and
different thresholds of word similarity.

* We also assess the quality of our clusters by
providing a quantitative analysis using differ-
ent metrics such as modularity and F-score
which are calculated by comparing the chan-
nels in the clusters created by our system to
the predefined data set and manually tagged
data set.

The paper is organized as follows. In Section
2, we introduce related work pertaining to content-
based classification and clustering techniques. In
Section 3, we describe in detail our methods and
implementations for YouTube channel categoriza-
tion. In Section 4, we describe an evaluation of our
results, including both a quantitative and qualitative
analysis. In Section 5, we draw final conclusions
and talk about future work that can be done for our
project.

2 Related Work

Manual keyword extraction is highly cumbersome
and, there is much research in developing unsu-

pervised keyword extraction from texts. Unsu-
pervised methods can be categorized into graph-
based, statistic-based, and topic-based methods (Pa-
pagiannopoulou and Tsoumakas, 2019). Within
topic-based KPE methods, there are clustering-
based methods where candidate keyphrases ex-
tracted from text are agglomerated and used as
vertices in a complete graph and given a signif-
icance score with a graph-based ranking model
(Bougouin et al., 2013). Finally, key phrases are
then selected from candidates in top-ranked topics
and returned. KeyBERT utilizes an unsupervised
KPE model denoted as Masked Document Embed-
ding Rank, in which it employs a novel method
of ‘masking’ keywords in a hence masked ver-
sion of the original document and looking for the
least semantically similar sections to pick out key-
words(Zhang et al., 2023). The logic in this is that
the most important keywords are unique and thus
should near completely define the meaning of sen-
tence structures in the document, meaning that their
removal should cause the greatest discrepancies in
semantic similarities when comparing the masked
document and the original document. TextRank
is a graph-based model which applies an adapted
version of Google’s PageRank algorithm(Brin and
Page, 1998) iteratively on a graphical representa-
tion of the inputted text to rank and extract key-
words top, similarly to how the PageRank algo-
rithm does so to rank the relevance of websites.
TextRank introduces the idea of ‘recommendation’,
where importance of words in a text is identified
not only through local context of a single graph
unit, but also by recursively computing ‘recom-
mendations’ given by other related text units in
the graph, and finally computing an importance
score based on how important its related words are.
TextRank follows PageRank’s idea of the ‘random
surfer model’, where the reader is likely to follow
strings of words to find concepts that have relation
to the current concept that is being read.

3 Methods and Implementation

In this section we discuss our six different methods
for accomplishing our goal in chronological order
of implementation: Data Selection, Data Scraping,
Keyword Extraction, Similarity Score Calculation,
Clustering Technique, and Modularity. We used a
variety of different algorithms and python libraries
to implement these methods. In the following, we
dive into a detailed description of these implemen-

tations.

3.1 Baseline Systems and Data Selection

In order to evaluate our system, we created two
baseline systems to compare our final clusters to:
the categories that were defined by YouTube that
the YouTubers selected themselves upon creation
of their channel and the categories that were anno-
tated by us based on the YouTubers’ content.

The first baseline system is a list of 15 chan-
nels from 15 categories, a total of 225 youtube
channels. The 15 categories are YouTube’s de-
fault categories that all YouTubers need to select
when creating their channels: Autos & Vehicles,
Comedy, Education, Entertainment, Film and Ani-
mation, Gaming, Howto & Style, Music, News &
Politics, Nonprofits & Activism, People & Blogs,
Pets & Animals, Science & Technology, Sports,
and Travel & Events. We did not include chan-
nels that did not provide transcripts due to the fact
that it would be impossible to scrape data from
these channels. We also only took into account
English speaking channels and skipped channels
that mainly spoke in a foreign language since our
system can only process transcripts in English.

We then used Social Blade to sort the most sub-
scribed YouTube channels in descending order for
each of the 15 categories. Social Blade is a leading
online platform that provides analytics and statis-
tics for YouTube channels. The platform provides
users with insight into a wide variety of metrics
such as subscriber count, view count, and estimated
earnings. By analyzing the data from millions of
YouTube channels, Social Blade is able to provide
a ranking list of top channels across various cate-
gories. After sorting the channels in each category,
we then manually compiled a data set of 225 youtu-
bers, their channels link, and their default labels.

Our second baseline continued off of our already
created data set of 225 youtubers based on Social
Blade’s ranking system. Using the same list of
YouTubers, 4 annotators manually categorized each
of the 225 channels based on the content of each
channel. In total we had 18 manually assigned
categories that are as follows: Cars, Variety Enter-
tainment, Comedy, Technology, Food, Education,
Kids, Beauty, Film, Gaming, Howto, Music, News,
Politics, Religion, Animals, Sports, and Travel. Af-
ter compiling both of our baseline data sets, we
then were able to move onto scraping data from the
channels.

3.2 Data Scraping

Our overall goal for data scraping was to scrape
the transcripts of the top 10 most viewed youtube
videos with English transcripts for each of the
YouTubers in our data set (see 3.1), merge the tran-
scripts of the 10 videos to build a corpus for each
YouTuber, and output all YouTubers’ names and
corpora into a single JSON file.

To accomplish this goal, we determined each
channel’s top 10 most viewed videos by using
the scrapetube library which returned to us 10
video IDs for each channel. With these video IDs,
YouTube Transcript/Subtitle API was used to scrape
the transcripts of the videos corresponding to the
video IDs. All of the scraped data was formatted
using the text formatter provided by the API and
stored into our corpus. With the scripts corpus,
we were able to move on to keyword extraction
to provide a more concise categorization for each
channel.

3.3 Keyword Extraction

BERT, also known as Bidirectional Encoder Rep-
resentations from Transformers, is a pre-trained
deep learning model for generating word embed-
dings developed by researchers at Google Al Lan-
guage(Devlin et al., 2019). With BERT, a wide va-
riety of tasks can be performed, such as sentiment
analysis, entity recognition and text classification.

In our project, we used KeyBERT, a keyword ex-
traction model based on BERT word embeddings,
to extract keywords from each YouTuber’s script.
KeyBERT utilizes n-gram word embeddings gen-
erated by BERT and calculates cosine similarity
that shows how relevant each word is to the script
in order to generate keywords and their weights.
This weight represents how relevant a keyword or a
keyphrase is in relation to the text. The higher the
weight, the more relevant that word is in capturing
the overall topic of a text. The YouTube transcripts
scraped from 3.2 were used to get a list of single
keywords that best represent the topics YouTubers
talk about and the weights of the keywords. We
will later cluster YouTube channels together based
on the similarity of keywords between channels,
as well as a weight for each keyword. We used
KeyBERT to extract 5, 10, 15, and 20 keywords for
each channel to provide four different metrics for
each channel. In the evaluation part, we later dis-
cuss how we used these metrics to evaluate which
number of keywords provides the most accurate

final clustering graph.

3.4 Similarity Score Calculation

In this section, we describe our approach to calcu-
late a similarity score between two YouTube chan-
nels. The process of generating a similarity score
was composed of two tasks: generating word em-
beddings of the keywords of the two YouTubers
that will be compared and calculating the similar-
ity score based on the word embeddings and the
weights of each keyword.

A word embedding of a word is the numeric
vector representation of the word. The more se-
mantically similar two words are, the more similar
their word embedding vectors are. One of the best
known examples is taking the vectors for the words
“man”, “woman”, and “king”, the most similar vec-
tor to the result of vec(”king”) — vec("man”) +
vec("woman”) will be the vector of the word
“queen” (Mikolov et al., 2013). In our research,
we used a word embedding generating algorithm
named Word2Vec.

3.4.1 Word2Vec

Word2Vec is a neural network model that is used
to generate word embeddings based on the se-
mantic and syntactic relationships between words
(Mikolov et al., 2013). In our research, we used
gensim, an open-source Python library that pro-
vides tools for natural language processing and
information retrieval, to load a pre-trained word
and phrase Word2Vec model derived from Google
News dataset, which contains 300-dimensional vec-
tors for 3 million words and phrases. With this
model, we were able to input a word and get its
corresponding embedding.

3.4.2 Weighted Cosine Similarity Score

In order to calculate how similar two keywords
are, we first calculated a cosine similarity score
between the two keyword embeddings. Then, using
the cosine similarity score and the weights of the
two keywords generated by KeyBERT, we were
able to calculate a weighted similarity score.

Cosine similarity (1) is a metric that is used to
measure the similarity between two non-zero vec-
tors.

Z?:l AiB;
Vo AT, B

Where A and B are the word embedding vectors,
and n is the length of the word embedding.

S(A,B) = (D

A cosine similarity score ranges from -1 to 1.
We have 4 thresholds for the cosine similarity score
that determine if the score will be used to calculate
the weighted cosine similarity score: 0.6, 0.7, 0.8,
and 0.9. We will later evaluate the result obtained
by using the four thresholds.

Once we calculated the cosine similarity scores
between all the keywords for the two YouTu-
bers that are comparing, we calculated the fi-
nal weighted cosine similarity score of any two
YouTube channels as in (2)(3).

n n

1
T == J
otalWC'S = ~ Z Z wCS;; @
=0 j=0
Where
Wes,; = 2w i) g)

max(.S) — min(S)

¢ stands for the index of the keyword in keyword
vector 1 (YouTuber 1), and j stands for the index
of the keyword in keyword vector 2 (YouTuber
2). S;,; stands for the similarity score between
keyword ¢ and keyword j, and S stands for the list
of similarity scores between two keyword vectors,
and W; stands for the weight of keyword 4, and W;
stands for the weight of keyword j. Notably, when
maxz(S) — min(S) equals 0, or S; ; is lower than
the threshold, W C'S; ; equals 0. n stands for the
count of non-zero WC'S; ;. If n equals 0, WC'S; ;
will also equal 0.

3.5 Graphs

To cluster the YouTubers, we created graphs where
nodes are the YouTubers, and the edge weights be-
tween our nodes are the weighted similarity scores.
We used the NetWorkX library to generate the
graphs. NetWorkX is a Python library that helps
visualize and manipulate data within networks and
graphs. With the graphs, we were able to cluster
YouTubers and conduct both qualitative and quan-
titative analysis.

3.6 Clustering Technique and Modularity

To find communities based on given
weights between nodes, we used the
greedy modularity comunities function
from NetWorkX(Clauset et al., 2004). This

function applies the Clauset-Newman-Moore
greedy modularity maximization method, which
is widely used for larger network analysis in a

Keyword Number
5 10 15 20
0.6 | 0312 0.397 046 0465
0.7 10243 037 0.392 0432
Threshold
0.8 1 0246 0.346 0.374 0.442
09 | 0216 0.326 0.355 0.387

Table 1: Manually Tagged List Threshold vs Keyword
Numbers

Keyword Number
5 10 15 20
0.6 | 0.287 0.352 0417 0423
0.7 1 021 0.329 0.347 0.394
Threshold
0.8 | 0.206 0.305 0.341 0.396
09 | 0.182 0.294 0.322 0.341

Table 2: Predefined List F-score vs Threshold

relatively fast runtime. The function returns a set
of clustered communities based on the weights
of edges between nodes. Using this set, we can
then calculate a modularity score of our graphs
with the provided modularity calculation method
in NetWorkX. A modularity score defines how
well separated communities are from each other
and how dense these communities are. We then
can conduct a quantitative analysis on our system
based on the modularity score and how similar our
clusters are to two baseline systems.

Manually Tagged List F-Score vs Threshold

== 5 Keywords == 20 Keywords 10 Keywords == 15 Keywords

05

0.2

F-Score

0.1

0.0
0.6 0.7 0.8 0.9

Threshold

Figure 1: Manually Tagged List F-score vs Threshold

Predefined List F-Score vs Threshold

== 5Keywords == 20 Keywords 10 Keywords == 15 Keywords

0.5

0.3

0.2 ¥

0.1

F-Score

0.0
0.6 0.7 0.8 0.9

Threshold

Figure 2: Predefined List F-score vs Threshold

Modularity vs Threshold

== 5keywords == 10 keywords 16 keywords == 20 keywords

=
=

=)

Modularity
~O

\

wo

=3

&
>

0.7 0.8 0.9
Threshold

Figure 3: Modularity VS Threshold

4 Evaluation and Results

4.1 F-score Evaluation Method

To calculate our recall, precision, and F-score, we
employed a greedy algorithm that compared every
single cluster from the predefined list of clusters or
manual list of clusters against the clusters formed
by our algorithms. This was used so that we can
match the clusters with the most intersections with
each other to calculate the true positive, false nega-
tive, and false positive as pairs for a total of n pairs.
We then sum the true positive (¢p;), false negative
(fn;), and false positive (fp;) from each cluster-to-
cluster comparison pair. Following that we calcu-
late the precision, recall, and f-score. This process
is repeated for each x keyword and y threshold
graph we generate.

> tp;

Precision = —5 7 “4)
Zi tp; + ZZ Ipi
> tpi
Recall = ——=2— (5)
Yoitpi+ 200 fng
2x P
Fscore = *7*]% (6)

P+ R

4.2 Quantitative Analysis

Table 1 shows the F-scores of our system with dif-
ferent thresholds and keyword numbers compared
against the manually tagged YouTuber label base-
line system. The system achieved the highest F-
score of 0.465 at 0.6 threshold and 20 keywords,
while the lowest F-score 0.216 was at 0.9 threshold
and 5 keywords. Table 2 shows the F-scores of
our system with different thresholds and keyword
numbers compared against the predefined YouTu-
ber label baseline system. The system achieved the
highest F-score of 0.423 at 0.6 threshold and 20
keywords, while the lowest F-score 0.182 was at
0.9 threshold and 5 keywords.

Comparing the results of the two baseline sys-
tems, it was found that our system has a slightly bet-
ter performance when compared against the man-
ually tagged YouTuber label baseline system. On
average, the F-score is 12.498% higher than the
predefined YouTuber label baseline system. A pos-
sible interpretation of this result is that the prede-
fined YouTuber label for a YouTube channel was
defined upon the creation of the channel, and it
might not correctly represent the actual topic that
most videos in that channel are talking about. Since
the manually tagged baseline system is based on
the overall content of a channel, and our system
used the scripts of the top 10 videos of the chan-
nel, the result generated by our system was favored
more by the manually tagged baseline system than
the predefined label baseline system.

Figure 1 and Figure 2 visualizes the trends of
how F-score changes when keyword numbers and
threshold changes. In both figures, the more key-
words, the better performance the system has; the
lower the threshold, the higher the F-score is. One
possible explanation for the trend of the keyword
is that using more keywords can result in having
more words that have different meanings, so the
keyword list can better capture the topic a YouTu-
ber is talking about and thus more likely makes
a YouTuber connect to other YouTuber with sim-
ilar topics. For example, Khan Academy is an
educational YouTube channel. The top five key-
words of Khan Academy are “tutoring”, “tutor”,
“classroom”, “classrooms”, and “students”. It can
be identified that “tutoring” and “tutor” are very
similar in terms of their meanings, same for “class-
room” and “classrooms”. Although these words
are very relevant to education, more varieties of
words are needed to connect this channel to other

educational channels who might not have these key-
words in their top five keywords list. A potential
reason why a higher threshold results in a lower
F-score is because when calculating the weighted
similarity score, a high threshold will lead to an
overall high weighted similarity score between any
two YouTubers since only high cosine similarity
scores between two keyword embeddings will be
added.

As Figure 3 shows, the higher the threshold, the
higher the modularity score, and the modularity
score and keyword numbers do not have a signif-
icant correlation. A high modularity score indi-
cates that the clustering algorithm has successfully
identified groups of nodes(communities) that are
more tightly connected to each other than to nodes
in other clusters. Therefore, a graph with a high
threshold has more well-defined clusters. However,
the trend of the modularity score against threshold
was the opposite as the F-score against threshold.
Thus, we can conclude that a graph with a high
threshold has well-separated clusters but with low
accuracy, and a graph with a high keyword num-
ber is more accurate to represent the categories of
YouTubers but the clusters are less well-defined.

15 keywords

20 keywords

Figure 4: Graphs of 0.6 Threshold with 5, 10, 15, and
20 Keywords

4.3 Qualitative Analysis

We then analyzed the final clustered graphs that
were displayed to us using a software called Gephi.
On Gephi, we can run their built-in modular-
ity function that automatically clusters all of the

0.9 threshold

0.8 threshold

Figure 5: Graphs of 20 Keywords with 0.6, 0.7, 0.8, and
0.9 Threshold

YouTubers together and color codes them based
on their category as given through the modularity.
We decided it would be most important to analyze
four graphs with 5, 10, 15, and 20 keywords all
at the same threshold (Figure 4) as well as four
graphs with the same number of keywords but all
four thresholds of 0.6, 0.7, 0.8, and 0.9 (Figure 5).
This way we could see if there was a common trend
of how accurate our clusters were depending on the
number of keywords and the threshold value.

We first analyzed the all four graphs for a thresh-
old of 0.6; in Figure 4, it was noticeable that as
the number of keywords increased, the number of
youtubers in each cluster increased, and the dis-
tance between the nodes decreased. This meant
that with more keywords, our system was able to
better identify the overall theme of each channel
and place it in its respective category. We also no-
ticed that the graphs with more keywords started
to exhibit a higher number of connections between
YouTube channels. As you can see from the graph
with 5 keywords, almost half of the youtubers are
either in extremely tight knit clusters or not in any
groups at all. However, the graph with 20 keywords
only displays four YouTube channels not connected
to any other nodes, a significant improvement from
the five keyword graph. All other channels are also
much closer to each other and have hundreds of
connections running through them. We determined
the main reason for this is because with a higher
number of keywords, there is a higher probabil-

Joyce Meyer Ministries

Phi
ology.
Gdbe Pofrot
@ Dhar Mahn

g‘@ @~

~0e® o

regger
jack e

Figure 6.1 Blue Cluster

riger

g

R

Kha Academy

Dondld J Thump

Figure 6.2 Yellow Cluster

Tl"‘e“an ‘ “mw " wg@m lé
@Z‘)T:@NEAP .\.,, "@;‘ @L tics
=3 @m o ? Pee-°°
3:9 g Env-’nuv\mws er
S ®
& T e
B | orlaios

Figure 6.3 Orange Cluster Figure 6.4 Pink Cluster

Figure 6: 4 Clusters Selected from the Graph with 20
Keywords and 0.6 Threshold

ity that YouTube channels contain identical/similar
keywords. When we only extract five keywords,
there is not enough information to create accurate
clusters, which resulted in many YouTube channels
not being a part of any group but rather stayed on
the outside of the graph without any connections.
Thus, the trend displayed among these four graphs
is that as the number of keywords increased (from
5 up to 20) the more accurate our clustering system
became.

To analyze the role threshold plays in our system,
four graphs with 0.6, 0.7, 0.8, and 0.9 threshold
and keyword number 20 were evaluated. As we can
see in Figure 5, clusters are more well separated
from each other in the graph with high threshold
than those with low thresholds, which was also in-
dicated by the trend of the modularity score when
the keyword number is the same in 4.2. On the
other hand, more YouTubers engage in the cluster
in the graph with lower threshold than those with
higher thresholds. We found out that high thresh-
old can also result in more YouTubers not being
connected to any other YouTubers because all of
the cosine similarity scores are below threshold, re-
sulting in a weighted similarity score of 0. Also, a
high threshold can also result in more well-defined
clusters, but the accuracy of the clustering might
not be high as discussed in 4.2.

As mentioned in 4.2, the graph with 20 key-
words and 0.6 threshold has the highest accuracy.
Therefore, a qualitative analysis is conducted on

this graph to identify the topics of a few clusters
to see how relevant is the topic of the cluster to
each YouTuber, and how distinct are the topics of
two different clusters. The gravity of the graph
was lowered so we can better read and distinguish
between channels. Thus, these clusters look a little
different than the graphs above.

Figure 6 includes the 6 clusters we found that
can best represent the graph. Figure 6.1 is defined
as a food cluster, as most of these channels pertain
to food reviews and meal preparing. Still, there
are a few outliers that do not belong to the food
category like FaZe Rug, jacksepticeye, and Insider
Business. However, as we examined, the top videos
of these channels are relevant to food in some way.
For example, FaZe Rug is a variety entertainment
channel, but some of his top videos are about food
challenges. Figure 6.2 is an example of a “vague”
cluster because it is hard to identify a topic. Joyce
Meyer Ministries and Gabe Poirot are religion chan-
nels; Donald J Trump is a politics channel; Khan
Academy is an education channel; Dhar Mann is a
variety entertainment channel. The orange cluster
in Figure 6.3 is also a vague cluster, but two topics
can be identified: technology and variety entertain-
ment (mostly about fishing), so if this cluster was
splitted into two clusters, a more accurate result
could have been obtained. For example, Unbox
Therapy’s entire channel revolves around unboxing
new technology items which is similar to Marques
Brownlee who gives reviews on tech-related items.
Figure 6.4 is the vehicle/car cluster as well as our
Engineering cluster. Many of these channels talk
about cars or do projects related to engineering
and motor vehicles. For example, Michael Reeves
is a channel that builds projects and many of his
popular videos are when he creates tiny robotic
vehicles.

To sum up, for the clusters that were easy to
be labeled, most channels within the clusters are
relevant to that specific category, and the topics
of each cluster are distinct from each other. On
the other hand, the vague clusters cannot represent
certain topics, and some of them should be further
splitted into more subclusters. Within a cluster,
there might be some outlier channels that make
a few videos that are relevant to the topic of the
cluster, but in general the channels are not just
about the topic. One possible way to get a better
result was to scrape more data from the channel,
so the overall content of a channel can be best

captured.

5 Conclusions and Future Work

We presented a basic model for YouTube channel
clustering based on their content. From our anal-
ysis, we drew the conclusion that higher keyword
count and lower threshold leads to lower accuracy
and therefore, as the F-Score is below 0.5, our clas-
sification system still has some room to improve.

In our study, only Word2Vec was used to gen-
erate word embeddings. In future, more varieties
of word embedding generating algorithms can be
applied. In our system, Word2Vec can be replaced
by context-independent algorithms like GloVe, so
we can determine which word embedding algo-
rithm can achieve a higher accuracy. However, for
context-sensitive embedding algorithms like BERT,
it will be challenging to make the change. There-
fore, more modifications to the system need to be
made to enable the use of context-sensitive embed-
ding algorithms.

Due to the high runtime of our system and time
constraint, we were not able to find a breakpoint
for the threshold that after this breakpoint, as the
threshold decreases, the f-score goes down, or test-
ing our system with more thresholds to prove that a
lower threshold always results in a higher F-score.
Also, we were also not able to find a breakpoint or
a trend for keyword numbers. After implementing
a more optimized algorithm, our system can be run
faster and thus allow us to try more combinations
of thresholds and keyword numbers.

References

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. TopicRank: Graph-based topic ranking for
keyphrase extraction. In Proceedings of the Sixth
International Joint Conference on Natural Language
Processing, pages 543-551, Nagoya, Japan. Asian
Federation of Natural Language Processing.

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual web search engine. Com-
puter Networks and ISDN Systems, 30(1):107-117.
Proceedings of the Seventh International World Wide
Web Conference.

Aaron Clauset, M. E. J. Newman, and Cristopher Moore.
2004. Finding community structure in very large
networks. Phys. Rev. E, 70:066111.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Eirini Papagiannopoulou and Grigorios Tsoumakas.
2019. A review of keyphrase extraction. CoRR,
abs/1905.05044.

Linhan Zhang, Qian Chen, Wen Wang, Chong Deng,
Shiliang Zhang, Bing Li, Wei Wang, and Xin Cao.

2023. Mderank: A masked document embedding
rank approach for unsupervised keyphrase extraction.

A Github Repository Link
github.com/kaiserarg/NLP-Cluster-Categorization

https://aclanthology.org/I13-1062
https://aclanthology.org/I13-1062
https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1103/PhysRevE.70.066111
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1905.05044
http://arxiv.org/abs/2110.06651
http://arxiv.org/abs/2110.06651
https://github.com/kaiserarg/NLP-Cluster-Categorization

