JEPA Model For Two Room Navigation

Jack Chen Deniz Qian Matthew Dong
NYU Courant NYU Courant NYU Courant
zc2398 @nyu.edu dq2024 @nyu.edu matthew.dong @nyu.edu

I. INTRODUCTION

Our project focuses on developing and training a Joint
Embedding Prediction Architecture (JEPA)-based model for an
agent navigating a two-room environment. The model generates
trajectories by processing sequences of observations and actions
within a toy space consisting of two rooms separated by a wall
with a gap in the middle. These representations are essential
for capturing key elements of the environment, such as agent
movement and the positions of walls and the hole in the wall.

The primary objective is to minimize the energy of predicted
representations in latent space while effectively preventing
representational collapse. Once trained, the model will be
evaluated on its ability to accurately predict the agent’s location
across various scenarios. By undertaking this project, we aim
to deepen the understanding of JEPA’s applications in dynamic
systems and explore solutions to real-world challenges such
as efficiency and generalization.

II. LITERATURE REVIEW

Asides from the JEPA paper, we also reviewed the 3 papers
that were provided in the project repository. The Variance-
Invariance-Covariance Regularization (VicReg) method []1]],
introduces a self-supervised learning framework designed to
learn meaningful representations without relying on negative
samples or additional clustering steps. The variance term
ensures that embeddings for a batch of samples retain sufficient
variance along each dimension, thereby preventing representa-
tion collapse. Second, the invariance term promotes similarity
between representations of augmented views of the same image.
Lastly, the covariance term aims to reduce redundancy between
embedding dimensions, fostering the extraction of diverse
and informative features. VicReg’s focus on decorrelation and
feature diversity motivated us to explore this architecture. In
our project, we used VicReg’s principles to address challenges
we encountered, like energy collapse and lack of diversity in
embeddings. Specifically, the variance term helped our training
stabilize by making sure the embeddings maintained sufficient
variance. The invariance term aligned representations across
different views of the two-room environment, reinforcing the
model’s ability to learn consistent spatial patterns.

The Bootstrap Your Own Latent (BYOL) framework, devel-
oped by Grill et al. [2], introduces an innovative self-supervised
learning approach that removes negative samples, contrasting

Thank you to the NYU HPC for providing great resources on how to use
the system, and to the professors for a great class!

pairs, and clustering requirements. BYOL operates with two
networks: an online network and a target network. The online
network, comprising an encoder, projector, and predictor, is
updated using gradient descent. In contrast, the target network,
which consists of an encoder and projector, provides stable
targets for the online network and is updated through an
exponential moving average of the online network’s weights.
BYOL'’s paradigm focuses on predicting the representations of
augmented views of the same image, minimizing the distance
between predictions and target representations in its loss
function. This approach eliminates the reliance on explicit
negative pairs, reduces batch size requirements, and improves
memory efficiency. BYOL’s use of an online and target network
structure could provide a robust way to stabilize learning
without relying on negative pairs. This could help with our
goal to simplify the training process. The framework is also not
significantly affected by augmentation and batch size variations
which could help with scaling our model and and using different
regularization strategies in the future.

The work by Hadsell et al. [3]] on dimensionality reduction
explores learning invariant mappings that preserve the essential
structure of input data while ensuring invariance to transfor-
mations. Central to this approach is the use of margin-based
contrastive loss, which enforces a separation between similar
and dissimilar data points by pulling similar points closer and
pushing dissimilar points apart beyond a predefined margin. In
our project, we introduced a contrastive margin error term into
our loss function to enforce separation between embeddings of
similar and dissimilar pairs within the two-room environment.
This helped promote diversity among embeddings and ensured
that the latent representations were discriminative. The use
of contrastive loss also aligned with our goal of preventing
overfitting.

As mentioned above, after analyzing these methodologies,
we decided to implement the VicReg architecture as our
initial approach. Its reliance on principled regularization to
ensure the non-collapsing, invariant, and diverse nature of
representations aligns with our research objectives. Moreover,
VicReg’s straightforward training paradigm provides a robust
starting point compared to the more complex mechanisms
employed by BYOL. The insights from Hadsell et al.’s work
on margin-based contrastive loss will guide future modifications
aimed at further enhancing our methodology. Of the three, we
initially decided to begin by testing the VicReg architecture.

III. METHODOLOGY

In order to develop a working JEPA model, we explored
various methodologies to address the challenges encountered
during training. We initially utilized ResNet-18 and ResNet-
50 as encoders in two separate versions of the model. These
distinct configurations were aimed at evaluating the potential
of different encoder architectures in addressing our objectives.
However, both versions encountered critical challenges during
training.

The version of the model using ResNet-18 consistently
suffered from over-regularization. This version stagnated
during training, unable to progress or generate informative
representations. While regularization strategies were adopted
based on established literature, their application in this context
led to adverse outcomes. The version of the model using
ResNet-50, on the other hand, consistently suffered from energy
collapse. While this approach was theoretically sound based
on the papers that we read, it proved ineffective in resolving
the persistent issue of energy collapse, even after numerous
adjustments to hyperparameters such as regularization strength,
learning rate, dropout rates, and momentum. These setbacks
prompted us to explore alternative methodologies before
revisiting hyperparameter tuning.

As mentioned previously, we saw little benefit from the
initial regularization; the variance of the model’s embeddings
was not decreasing as anticipated. To enhance the regularization
mechanism, we introduced a contrastive margin error into the
loss function inspired by the literature we read. This addition
was designed to enforce a margin between positive and negative
samples, thereby promoting greater separation and reducing
variance in the embeddings. Contrastive margin error leverages
the strengths of contrastive learning by explicitly encouraging
the model to distinguish between similar and dissimilar pairs.
This was expected to reinforce the regularization further and
prevent variance stagnation.

We also noticed that our energy calculations were yielding
excessively large values, which compromised the numerical
stability of the training process and did not allow for effective
optimization. To mitigate this, we recalibrated the energy
computation by transitioning from the traditional L2 distance
metric to Mean Squared Error (MSE). Switching to MSE
was motivated by its ability to provide a stabler measure
of energy, thereby preventing the explosive growth of loss
values and ensuring reliable training progression. Despite these
adjustments, the model continued to underperform, leading us
to believe there were issues with the existing architecture.

As a result of our analysis of the BYOL paper, we
decided to implement the BYOL architecture. We believed
its predictor-based approach could improve the model’s ability
to align representations effectively between augmented views,
potentially addressing lingering issues related to variance
and feature alignment. BYOL’s simplicity and demonstrated
capacity to learn meaningful representations without relying
on contrasting pairs aligned well with our goal of developing
robust embeddings. However, by the time we decided to switch

to BYOL, we were already deeply invested in the initial version
of the model. The codebase had become increasingly complex
due to the various adjustments and experimental additions we
had implemented. Transitioning to a new model architecture
required significant effort to adapt and integrate previous
work into the new framework. Debugging and refining this
implementation consumed a substantial amount of time, and
despite our efforts, the BYOL-based model did not produce
any meaningful results.

To explore temporal dependencies and sequential patterns in
the data, we also experimented with incorporating Long Short-
Term Memory (LSTM) units into the architecture. LSTMs
are particularly well-suited for modeling sequential data, as
they can retain and utilize information across extended time
steps. We hoped that this modification would enhance the
model’s ability to capture temporal dynamics and improve
overall performance. Unfortunately, this approach was also
unsuccessful. Implementing and debugging the LSTM-based
architecture required significant time and effort, further delaying
progress without yielding any tangible improvements.

Following these challenges, we decided to return to using
ResNet-50 as our encoder. Given the persistent issues with
the earlier codebase, we opted to start fresh, rebuilding the
model from the ground up to eliminate any hidden flaws
or inefficiencies that might have hindered our progress. We
implemented the BYOL framework with an encoder, expander,
and predictor. Additionally, we incorporated contrastive margin-
based regularization and kept the switch that we had done previ-
ously to mean squared error from L2 for energy calculations to
ensure numerical stability. This reset allowed us to streamline
our approach and focus on building a more robust and
effective model. Through this process of exploring and refining
methods, we worked to improve the JEPA model’s ability to
learn strong and useful representations. Each adjustment was
based on practical observations and supported by theoretical
understandings learned in class and from papers we read. In
the end, the final architecture with ResNet-50 as our encoder
gave us our best results yet. We then once again tuned our
hyperparameters to try and get better results. These results are
detailed in the next section of our report.

IV. RESULTS

We also made a copy of the data and moved it to the scratch
directories of the main Greene cluster in HPC, in order to be
able to perform more tests. However, the training time per
epoch rises from around 15-20 minutes per epoch on the burst
cluster, to around 2 hours per epoch on Greene. This is a 8
times decrease in training efficiency, and therefore makes it
unfeasible to train and test any of the models that we had
created on Greene. This limited our ability to test as many
different architectures and differing hyperparameters as we
wanted. Eventually, one of our members ran into issues getting
GPU allocation, even as the other members were able to obtain
GPUs on the burst cluster. At a crucial time in the project,
this also heavily limited our ability to test different model
variations.

Fig. 1. Initial Resnet50 based model.

As displayed in Figure 1, our initial Resnet50 model did
not perform very well, and barely learned any new methods
of generalization. At base, the MockModel tends to have
around 260 normal loss and 200 wall loss, so this model only
improved by around 10 loss points. Initially, we thought that a
decrease of 10 loss points could potentially be improved with
hyperparameter tuning, so we tried many runs with a variety of
different configurations. Our logic was that because the training
loss was consistently collapsing below the validation loss within
one single epoch, the model was very likely overfitting to the
training data. We also tried different version of learning rate
schedulers such as CyclicLR, StepLR, and CosineAnnealingL.R,
along with warm-up epochs. From previous experience, Adam
as an optimizer tends to perform better than SGD, but for the
sake of ensuring that we are confident which optimizer would
be the best for our specific use case, we tested both.

Fig. 2. Some results from our first tests. Every iteration of the model collapses.

Runtime

probe_lr

G -

learning rate |

Fig. 3. Metrics from the first tests, suggesting that we should decrease our
learning rate. We also decreased the learning rate because the model loss was
collapsing so fast that it was definitely overfitting.

After referring to our metric outputs in Figure 3, we decided
to decrease the learning rate. Despite the decrease in learning
rate from 2e — 4 (the number referenced in the VicReg paper)
to le — 5, the model still indicated signs of overfitting to the
training data. As displayed in Figure 5, our loss values were also
very unstable, exploding at the end of each epoch. This occurs
for both energy loss and MSE loss. To mitigate this issue, we
added gradient clipping, as well as further adjusting the learning
rate with the learning rate schedulers that were mentioned
previously. We were also running into issues where our energy
loss was on a scale vastly higher than our variance loss, leading
to issues in optimization. As a result, these methods did not
produce good results.

energy_loss variance_loss

Fig. 4. Loss comparison. As you can see, the energy loss is on a scale vastly
higher than the variance loss.

In order to be systematic with our hyperparameter tuning,
we used Weights and Biases (wandb) to tune our model. This
meant setting up the configuration for each model and testing
each version of the model with the relevant versions of the
hyperparameters filled in. Even after multiple runs testing these
different variations and using grid search to go through all of
the hyperparameters, none of the different variations would
result in proper training. From this point onwards, we knew
that we needed to rework our architecture.

Charts & 1-60f8 > & B e

Ir val_normal_loss val_wall_loss

energy_loss contrastive_loss loss

Fig. 5. Training statistics from one of our JEPA based models.

We did some preliminary tests in trying to implement the
BYOL architecture. As mentioned in the methodology section,
this meant replacing the entire model that we had set up
previously, while still ensuring that the data dimensions were
maintained. The BYOL model as shown in the paper needed
extensive reworks in order to work with the dataset that we had
been given for this project. However, even after these edits, the
model was still not training properly, and loss was collapsing.
The same was occurring for the LSTM based version of the
model.

To expedite training and allow for more extensive experi-
mentation, we aimed to utilize Distributed Data Parallel (DDP)
from PyTorch. Successfully implementing DDP would have
significantly reduced training time, enabling us to test a broader
range of model configurations more efficiently. This could
have helped us identify optimal hyperparameters faster and
potentially spot architectural issues earlier in the process. The
plan was to leverage resources such as 4 GPUs from Greene
or 2 GPUs from Burst. Based on previous projects where we
had successfully implemented DDP, we anticipated that this
integration would be straightforward.

However, despite referencing code from our earlier projects
and conducting numerous tests, we were unable to get DDP
working with the current codebase. The issue seemed to stem
from structural differences between the provided code and the
examples we were referencing. This setback consumed valuable
time that could have been spent on other aspects of the project,
and unfortunately, the effort did not yield any tangible benefits.

In our final iteration of the model before the submission
deadline, we were able to get some noticeable improvement in
the model. Instead of collapsing immediately, the regularization
techniques that we added to the model were able to keep the
energy function from collapsing as soon as the model started

training, so the validation loss was able to go down.

val_normal_loss

100 200

deft-s;

contrastive_loss

Graph of contrastive loss for best model.

Parameter importance with respectto (|| _runtime

22 Parameters & 110+ of21 >
240 notes
runtime 4h37m 285 1h31m 155 40m 3 Importance @ & Coretation
Runtime CE— L]
» lue"({val | I []
wandb Cvalue e, (value{'m .. ('valu distance{...alue_mse —
220 ~ phse o0 o 2
— - repr_dim | O
- distance_function ~ mse mse 12
lambda_cov a
lambda_contrastive 0.1 0.1 -
200 lambda_cov 1 1 distance_f...n value_12 -
~ lambda_energy 25 2 lambda_energy -
lambda_var 25 2 lambda_var -
learning_rate 0.0002 0.0002 0.000(§ -
180 e min_variance
margin 05 05
-—

Step

100 200

300 400

=

500 600

Fig. 6. The graph of the normal loss for our best model. The graph for our
wall loss was very similar in shape, with different numbers.

energy_loss

Fig. 7. Graph of the energy loss metric for our best model.

As training progresses, eventually the validation loss for
both normal loss and wall loss stop decreasing and start going
up again. There could be a number of reasons for this. It is

possible that our regularization is not strong enough, and that
the model still eventually collapses.

V. FUTURE WORK

With additional time to work on the project, we would have
been able to further refine and improve the model. Although
we made some progress and achieved improvements toward the
end of the project, these advancements came too late to make a

Fig. 9. Information on each of the metrics that we used in our best model
and how they affect validation loss.

significant impact. Unfortunately, we were unable to implement
or test further enhancements before the project deadline.

We would aim to utilize the information that we know about
each of the metrics to adjust our hyperparameters accordingly.
For example, it seems like increasing the dimensions of the
model results in better validation loss by a pretty significant
amount. Therefore, we would run the model again and test
larger values of ‘repr_dim‘. We would do this for each of the
hyperparameters seen, look at how the model performs on the
validation datasets, and then continue to adjust accordingly
until we get the best results that we can get with our current
architecture. Once that process is complete, if the validation
loss of the model is not low enough for our purposes, we were
planning on going back and testing some of the architectures

that not worked previously for us, now that we have a working
version of the model.

REFERENCES

[1] A. Bardes, J. Ponce, and Y. LeCun, “Vicreg: Variance-invariance-
covariance regularization for self-supervised learning,” 2022. [Online].
Available: https://arxiv.org/abs/2105.04906
J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G. Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent:
A new approach to self-supervised learning,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.07733
R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 1735—

1742, 2006. [Online]. Available: https://api.semanticscholar.org/CorpusID;
8281592

(2]

3

—_

https://arxiv.org/abs/2105.04906
https://arxiv.org/abs/2006.07733
https://api.semanticscholar.org/CorpusID:8281592
https://api.semanticscholar.org/CorpusID:8281592

	Introduction
	Literature Review
	Methodology
	Results
	Future Work
	References

