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I. PROJECT OVERVIEW

We introduce Venture Al, your automated travel agent.
The goal of Venture Al is to address the complexity of
modern travel planning by creating a single application that
provides personalized travel recommendations tailored to each
user’s preferences and budget. Today’s large language models
are very versatile, but they lack the specific customization
needed to deliver precise suggestions for unique user needs.
By utilizing LLMs and integrating them with real-time APIs
from various travel-related sites, Venture Al will act as a
comprehensive travel planner that can cater to a wide range
of travel preferences.

This project addresses a common problem with travel
planning by using new LLM techniques to simplify and
centralize the planning process. Without LLMs, users must
manually navigate different websites to organize flights and
local activities, often making travel planning inefficient and
demotivating. LLMs offer an advantage in this space due to
their ability to handle and respond to natural language queries.
They can process real-time user feedback to refine suggestions
in an adaptable and user-friendly way.

Through these capabilities, Venture Al aims to transform
how travelers organize their adventures, making the process
more efficient, personalized, and enjoyable.

II. PROJECT OBJECTIVES AND CONTRIBUTIONS

Our main goal is to fine-tune open-source large language
models and integrate them with APIs from a variety of
different websites (such as flight and hotel price aggregation
websites) to develop a seamless, Al-driven travel planner.
We want to make travel planning more efficient by offering
personalized recommendations that are tailored to each per-
son’s specific travel needs while also taking advantage of the
flexibility and brainstorming capabilities of LLMs. Everybody
travels differently since people have different preferences for
location, different budgetary limits, and different ideas for
what they want to do in those locations. By leveraging the
power of LLMs, we aim to provide users with natural language
interactions that can adapt to specific needs, preferences,
and even real-time changes in their plans. The flexibility
and learning capability of LLMs allow the system to offer
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intelligent suggestions and updates based on user feedback
and travel data.

The key idea that sets Venture Al from other LLMs is our
robust API infrastructure, enabling the system to utilize real-
time data along with the LLM’s highly customizable, dynamic
travel planning solutions. Existing tools require travelers to
go to multiple different websites all at the same time to get
all the information they need for their trip, such as Google
Flights/Expedia for flight information, Booking.com/Airbnb
for nightly accommodations, and TripAdvisor for location
recommendations. By streamlining this effort into a single
location, Venture Al will allow travelers to focus much more
on the aspect of vacation where they actually get to travel
instead of spending large amounts of time on planning.

When compared to current state of the art models like
ChatGPT-4 and Gemini, they still have a few key distinctions
and limitations that VentureAl aims to solve. ChatGPT-4 lacks
direct access to current sources, meaning that its outputs
are constrained by its knowledge cutoff date and do not
reflect recent developments or updates. Although ChatGPT-
4o introduces internet access, its methodology is limited to
searching the web rather than using carefully vetted and
trustworthy sources. This can lead to variability in the quality
and reliability of its responses.

Gemini, on the other hand, offers integration with many of
Google’s services, such as Google Maps. However, the LLM
occasionally struggles to manage these integrations effectively,
as shown in Figure 1. leading to confusion and an inability to
provide relevant answers. This limitation highlights the impor-
tance of robust integration strategies to ensure that LLMs can
seamlessly leverage external services without compromising
the accuracy and utility of their responses. VentureAl con-
tributes to the larger machine learning community by solving
these problems through our methodlogy of utilizing Dynamic
Retrival Augmented Generation (Dynamic-RAG) from well-
known API sources as the core source of information for our
LLM.

III. LITERATURE REVIEW

There are many existing approaches that pursue solutions
to the issue of creating travel plans that include all of a
person’s constraints with an LLM. TravelPlanner is a recently
created benchmark that was created expressly for this purpose,
showcased in the paper TravelPlanner: A Benchmark for Real-
World Planning with Language Agents [1]. It involves many



a | would like to travel from New York City to Istanbul for 7 days. Give me a trip plan that
focuses on restaurants. Provide the price and hours of each restaurant.

Y Google Maps v

Unfortunately, | couldn't find any directions from New York to Istanbul. However, | did
find some flights for you:

Here are some flights from New York to Istanbul:
« Turkish Airlines from JFK (John F. Kennedy International Airport, New York) to IST
(Istanbul Airport, istanbul)

« JetBlue Airways from JFK (John F. Kennedy International Airport, New York) to IST
(Istanbul Airport, istanbul)

« Multiple airlines from EWR (Newark Liberty International Airport, Newark) to SAW
(Sabiha Gokgen International Airport, istanbul)

« Delta Air Lines from JFK (John F. Kennedy International Airport, New York) to IST
(Istanbul Airport, istanbul)

« LOT Polish Airlines from JFK (John F. Kennedy International Airport, New York) to IST
(Istanbul Airport, istanbul)

Fig. 1. Gemini Output: The LLM got confused and did not provide a relevant
response.

common key constraints such as budget, accommodations, and
specific common user preferences such as the locations being
pet-friendly. TravelPlanner reveals that while models like GPT-
4 can show promising results, they struggle to meet constraints
when trying to plan a trip for multiple days. They explain
this is due to failure to track constraints and over-reliance
on simplistic planning tools, highlighting the need for more
constraint-aware models.

Building on these findings, Can We Rely on LLM Agents
to Draft Long-Horizon Plans? Let’s Take TravelPlanner as an
Example [2] evaluates LLMs’ ability to create travel itineraries
and uses TravelPlanner as the benchmark. They test the
models on meeting certain constraints like budget, timing, and
preferences. The authors highlight limitations in models such
as GPT-4-Turbo, which struggle with long-context reasoning,
resulting in low success rates. To address this, they pro-
pose “Feedback-Aware Fine-Tuning” (FAFT), integrating both
positive and negative feedback, which improves the model’s
reliability in complex planning tasks. We incorporated many
ideas from FAFT in our planning, even though we did not use
it directly.

Expanding on the need for complex planning solutions,
Robust Planning with LLM-Modulo Framework: Case Study
in Travel Planning [3] explores strategies for more reliable
LLM applications in complex environments. It describes a
framework that adapts well to dynamic settings by incorporat-
ing external data inputs and employing algorithmic problem-
solving. This work ties into our idea of incorporating real-time
data with APIs and our Dynamic-RAG setup.

Large Language Models Can Solve Real-World Planning
Rigorously with Formal Verification Tools [4] proposes an
LLM-based framework that tackles travel planning as a con-
straint satisfaction problem. It leverages a variety of verifica-
tion techniques to ensure necessary constraints are met. The
framework saw better success when it broke down complex
tasks into smaller, solvable components. However, it struggled

when the user’s prompt was vague or underspecified. In
VentureAl, we ensure that the prompt fed to the LLM is not
vague by only taking the important information from the user,
and having a standard setup for the rest of the prompt.

A. Literature On Quantitative Metrics

Quantitative measures like perplexity and BLEU scores are
widely used in the evaluation of language models to assess
accuracy, fluency, and the alignment of generated outputs with
human-written references. The papers by Gonen et al. [5]]
and Montahaei et al. [[6] provide valuable insights into the
application of these metrics in understanding and improving
language model performance. As a result, we are able to use
both of these metrics in our own research as methods of
reporting the improvement of our fine-tuned models.

In the paper Demystifying Prompts in Language Models
via Perplexity Estimation [5]], perplexity is used as a central
metric to evaluate the fluency and coherence of language
model outputs. Perplexity measures the confidence of a model
in its predictions by calculating the inverse probability of the
predicted sequence normalized by its length. Lower perplexity
indicates higher model confidence and better alignment with
natural language patterns. Gonen et al. emphasize how prompt
design affects perplexity, revealing that well-crafted prompts
significantly reduce perplexity, thereby improving the model’s
ability to generate coherent and contextually appropriate re-
sponses. This study highlights the utility of perplexity in
diagnosing and optimizing prompt-based interactions with
language models, especially in tasks requiring precise and
accurate outputs.

Similarly, in Jointly Measuring Diversity and Quality in
Text Generation Models (6], the authors explore the use of
BLEU scores alongside other metrics to evaluate the quality
of generated text. BLEU (Bilingual Evaluation Understudy)
measures the overlap between machine-generated text and
reference human-written text, using n-gram precision to assess
the similarity. Montahaei et al. point out the limitations of
BLEU in capturing diversity but argue that it remains a reliable
measure for ensuring grammatical accuracy and adherence to
task-specific constraints. Their methodology includes using
BLEU in conjunction with diversity metrics to provide a more
holistic assessment of model outputs, which aligned with what
we were looking for in quantitative metrics.

IV. METHODOLOGY

Our methodology focuses on building a robust and user-
centric travel planner by leveraging state-of-the-art LLMs and
integrating them with real-time data sources. We selected
high-performing open-source models such as Falcon, LLaMA,
Mistral, and FLAN-TS due to their ability to generate coherent
and contextually relevant responses. These models were fine-
tuned using a curated dataset designed specifically for travel
needs. The dataset consisted of prompts and responses with
information sourced from Wikivoyage. Dynamic data from the
TripAdvisor API was also used to enhance the outputs of our
fine-tuned LLM.



A modular framework was implemented to integrate data
from APIs, enabling the model to access up-to-date informa-
tion efficiently. This framework allows for scalability, ensuring
new data sources can be added seamlessly, as continuous up-
dates provide users with accurate recommendations. Venture Al
is designed to adapt dynamically to the user’s desired city of
departure, destination city, length of travel, and area of interest,
offering personalized responses that accommodate changing
preferences and real-time constraints. By combining domain-
specific fine-tuning, modular integration, and adaptability, our
methodology ensures that VentureAl delivers a highly relevant
and responsive experience for users.

A key focus of our methodology is avoiding model halluci-
nation, a common issue in LLMs where the model confidently
generates incorrect or fabricated information. This challenge
poses significant risks in applications like travel itinerary
planning, where users rely on the system for accurate and
actionable information. If the model invents locations that do
not exist, it could lead users to unknown destinations, wasting
time and causing frustration. Similarly, hallucinating incorrect
details such as hours of operation, prices, or transportation
options can result in poor user experiences and undermine
trust in the system. In the travel planning context, precision
and reliability are non-negotiable.

To address this, we have committed to ensuring that our
model generates responses based solely on verified, trustwor-
thy information. By integrating a RAG framework into our
approach, we enable the model to retrieve accurate and up-
to-date information from reliable external data sources such
as Wikivoyage, and TripAdvisor. This grounding ensures that
the model’s outputs are not only contextually relevant but also
rooted in factual data. For instance, rather than generating
unsupported statements about a destination’s operating hours
or pricing, the model retrieves this information from an
authoritative source, reducing the risk of errors.

A. Data Collection and Preprocessing

The first step for data collection involved using the XML
data provided by Wikivoyage, which is freely available for
download. While XML is a comprehensive data format, it is
quite outdated and challenging to work with directly. There-
fore, our preprocessing began by converting the XML files
into JSON, a more modern and manageable data format. This
conversion made it significantly easier to parse and manipulate
the data for our purposes.

Once converted to JSON, we removed a considerable
amount of information that was unnecessary for our dataset.
This included metadata used for the Wikivoyage website, such
as formatting instructions, image-related data, and automatic
page redirects. While these redirects might be useful in the fu-
ture for auto-correcting common user errors in search queries,
they are currently irrelevant to the dataset and would introduce
noise into subsequent processing steps. By filtering out this
extraneous information, we were able to compile a clean,
human-readable JSON file containing only the most relevant
details about 32,802 cities.

The next step was to compile a training dataset for fine-
tuning our model. To achieve this, we used OpenAI’s 40-mini
model to generate example travel itinerary outputs. We crafted
prompts consisting of a user request (e.g., ’I would like to
travel from... to... for... days, focusing on...”) combined with
the cleaned Wikivoyage data for the respective cities. The 40-
mini model then produced detailed travel itineraries based on
these inputs. This process allowed us to generate a dataset of
approximately 10,000 entries, with each entry consisting of a
prompt-response pair. After more extensive data cleaning, we
were able to extract all restaurants and hotels from the dataset
and append those to the prompts for fine-tuning.

While we initially aimed to collect a larger dataset, rate
limits and cost constraints restricted the size of our dataset.
Expanding the dataset in the future is a key area of focus,
as it would provide more robust training material for fine-
tuning our model. Despite these limitations, the dataset we
compiled represents a strong foundation for creating a reliable
and context-aware travel planning tool.

B. Experimental Setup

We carefully designed our experimental setup for VentureAl
to ensure efficient fine-tuning of the Falcon-7b and Falcon-
7b instruct models while addressing the computational and
memory constraints inherent in large language models. The
fine-tuning process was conducted on the NYU Greene HPC
cluster, utilizing either 4 RTX8000 GPUs or A100 GPUs.
While H100 GPUs are theoretically compatible, their use
would require an updated version of PyTorch due to potential
compatibility issues with the version employed during our
training. Additionally, V100 GPUs were excluded due to their
limited 32 GB of memory, which is insufficient for the Falcon-
7b model and resulted in out-of-memory errors.

To evaluate our model’s performance, we required a testing
dataset separate from the training dataset to ensure accurate
measurements of generalization and performance on unseen
data. For this purpose, we generated a testing dataset following
the same methodology used to create the training dataset. This
involved using cities from Wikivoyage that were excluded
from the training dataset to ensure no overlap. The testing
dataset maintained the same structure as the training dataset,
consisting of prompt-response pairs generated by OpenAl’s
40-mini model.

Inference testing was performed with a temperature setting
of 0.2 to produce outputs that were consistent while still
retaining a small amount of variability. Given the memory con-
straints of the hardware that we had access to, we configured
a maximum token length of 700 for our dataset. Initially, this
parameter was set to 512 tokens; however, after integrating
additional data into the RAG framework, such as detailed
hours of operation for destinations, the token length had to
be expanded.

C. Model Architecture and Implementation

The architecture and implementation of VentureAl focus
on leveraging state-of-the-art open-source LLMs to create a



powerful and efficient travel planning system. To determine
the best model for fine-tuning, we conducted comprehensive
baseline testing on various LLMs using example prompts to
evaluate their performance. These included Falcon models
(with an emphasis on the 7 billion parameter versions and
occasional testing of the 40 billion parameter variant), LLaMA
models (standard and instruct variations with 8 billion pa-
rameters), Mistral, FLAN-T5, and BLOOM. Based on these
evaluations, Falcon-7b and Falcon-7b instruct emerged as the
top performers, demonstrating the best balance of capability
and efficiency for our use case.

For a detailed understanding of Falcon-7b’s architecture,
we refer to the Falcon paper. [7] The model is designed as
a state-of-the-art transformer-based architecture with 7 billion
parameters, providing robust capabilities for causal language
modeling. Despite its strong performance, the large size of
Falcon-7b posed memory constraints on the GPUs avail-
able to us. To address this, we employed Parameter-Efficient
Fine-Tuning (PEFT), specifically using Low-Rank Adaptation
(LoRA), to fine-tune the model effectively while significantly
reducing memory requirements. The LoRA configuration we
used includes » = 16, lora_alpha = 32, a dropout rate of
0.1, and targeted modules like ’query_key_value’ and ’dense’.
These settings were optimized to adapt the model efficiently
to our specific task without requiring full fine-tuning of all
parameters.

To further mitigate memory constraints, we applied float16
quantization during training and inference. While bfloat16 pro-
vides comparable precision with broader support for numerical
stability, it requires CUDA version 8 or higher, which is only
available on select GPUs, such as the A100 and H100, in
the NYU HPC system. Given the limited availability of these
high-end GPUs, we opted for floatl6 quantization to ensure
compatibility with the more readily available GPUs in the HPC
environment. This approach allowed us to maintain a balance
between computational efficiency and resource accessibility,
ensuring consistent progress throughout the project while
leveraging the performance advantages of Falcon-7b.

D. Training and Optimization Procedures

To further enhance our model’s outputs and allow it to
incorporate up-to-date information, we addressed a key limita-
tion of many state-of-the-art LLMs that we mentioned earlier
on: their inability to access real-time data. Models trained
solely on static datasets often struggle to provide relevant
responses for dynamic domains like travel planning. To resolve
this, we integrated real-time data retrieval into our workflow
by leveraging the TripAdvisor API. As a result, we have
developed a novel dynamic system using a Dynamic-RAG
framework to enrich our model’s outputs with the latest travel
information.

In our Dynamic-RAG approach, an API GET request is sent
to the TripAdvisor API immediately before the user’s query
is processed by VentureAl. This fetches real-time information
about the user’s destination city, including attractions, reviews,
and other relevant details. The retrieved data is then formatted

into a RAG knowledge base dynamically, ensuring the model
is equipped with the most current information available. This
knowledge base is prepended to the user query as part of
the prompt, allowing our fine-tuned LLM to generate re-
sponses that are both contextually relevant and up to date.
From analyzing the output, we realized that prepending the
RAG information performs slightly better than appending the
information. This is likely due to the fact that prepending the
information means that the last thing the model sees from the
input is the user’s query itself, which is the most important
part. By reading the user’s query last, it is able to remember
it more clearly comparing to appending the RAG data after
the user’s prompt. By combining real-time data with our fine-
tuned model, this approach significantly improves the accuracy
and usefulness of the model’s outputs.

To optimize the training process, we used PyTorch’s Dis-
tributedDataParallel (DDP) to distribute the training workload
across four GPUs, which we accessed through our HPC clus-
ter. This allowed us to train on larger batches and process data
more efficiently, resulting in faster convergence. To further
enhance efficiency, we utilized Low-Rank Adaptation (LoRA)
for parameter-efficient fine-tuning and floatl6 quantization,
which reduced the memory footprint of the model while
maintaining its performance. These techniques were especially
critical given the large size of the Falcon-7b model and the
computational constraints of our hardware.

V. RESULTS AND ANALYSIS

While the TravelPlanner dataset is a valuable resource
for travel-related research, we chose not to use it in our
analysis due to several limitations that conflict with the broader
scope of our project. First, the dataset is restricted to cities
within the United States, which limits its ability to train a
model capable of generating itineraries for culturally diverse
and international locations. Our goal is to create a globally
inclusive travel planner that can cater to a variety of cultural
contexts, preferences, and travel needs, making the geographic
restriction of the TravelPlanner dataset a significant drawback
for our purposes.

Additionally, the TravelPlanner dataset is relatively small,
containing only 1,225 queries. This limited dataset size stems
partly from the labor-intensive nature of its creation, as it
required 20 graduate students to manually annotate travel
plans. While this level of human effort results in high-quality
annotations, it restricts the scale and diversity of the dataset. In
contrast, our approach leverages LLMs to generate synthetic
travel itineraries based on verified real world data. This enables
us to produce a much larger and more diverse dataset, which
covers a wide range of destinations, preferences, and scenarios.
By focusing on LLM-generated data, we can train our model
on a significantly larger corpus, which improves its ability to
generalize and perform well in real-world applications.

The RAG framework allows the model to retrieve relevant
information from curated datasets or external APIs before gen-
erating responses, effectively grounding its outputs in real data.
This approach ensures that the model does not fabricate details



or rely on outdated knowledge, especially when generating
travel plans or itineraries. By designing the model to first
retrieve and verify data before producing text, we create a
dataset that not only maintains high accuracy but also reflects
the diversity and depth required for effective travel planning.
This emphasis on grounding LLM outputs ensures that our
generated dataset is robust enough to train a reliable and
context-aware travel planner.

A. Quantitative Results

This section discusses the quantitative metrics we used to
evaluate the performance of our fine tuned model against the
baseline model. o Perplexity (Fig 2) is a standard metric for
evaluating language models, representing the model’s ability
to predict the next word in a sequence. A lower perplexity
indicates a better predictive performance, as the model assigns
higher probabilities to the correct sequence of words. In our
experiments, the fine-tuned model achieved a perplexity of
3.86, outperforming the baseline model, which had a perplex-
ity of 4.89. This improvement demonstrates the effectiveness
of our fine-tuning process. The reduced perplexity reflects the
model’s increased fluency in understanding and responding
to user inputs, validating the impact of fine-tuning on the
system’s overall performance.

Perplexity Comparison

Perplexity

Baseline Fine-Tuned

Fig. 2. Falcon-7b Perplexity Results

The BLEU score (Fig 3) evaluates the quality of generated
text by comparing it to a reference text, with higher scores
indicating better alignment with the reference. In our evalu-
ation, the fine-tuned model achieved an average BLEU score
of 0.2539, significantly outperforming the baseline model,
which had an average BLEU score of 0.1085. This substantial
improvement highlights the effectiveness of fine-tuning, as the
model was better able to produce accurate and contextually
relevant responses closely matching the reference outputs. We
generated a test set of reference outputs ourselves using 4o-
mini to do the actual calculation of the BLEU scores.

Self-BLEU (Fig 4) is a metric used to assess the diversity
of generated outputs by comparing each generated sentence
to others within the same output set. Lower scores indicate
higher diversity, while higher scores suggest more consistency
in style or content. In our evaluation, the fine-tuned model
achieved a Self-BLEU-4 score of 0.796 and a Self-BLEU-2

BLEU Score Comparison
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Fig. 3. Falcon-7b BLEU Results

score of 0.881, compared to the baseline model’s Self-BLEU-
4 and Self-BLEU-2 scores of 0.608 and 0.687, respectively.
These results indicate that the fine-tuned model generates more
consistent and cohesive responses across n-gram levels while
maintaining contextual relevance. The increase in Self-BLEU
scores for the fine-tuned model increases our confidence that
our fine tuned model’s outputs will be able to consistently
deliver a high-quality travel itineraries.

Self-BLEU Comparison (4-gram and 2-gram)
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Fig. 4. Falcon-7b Self-BLEU Results

During our experimentation, we eventually decided on pri-
marily training Falcon-7b, Falcon-7b-Instruct, Falcon-40b, and
LLaMA-3.1-8B-Instruct. All the models demonstrated efficient
training on our dataset, achieving low loss values relatively
quickly. This rapid convergence indicates that our dataset was
well-suited for fine-tuning these models and allowed them to
learn effectively. You can find the loss graphs for these models
in the repository and in the presentation.

The key takeaway from these observations is that all the
models trained exceptionally well on our dataset, confirming
the quality and relevance of the data we provided. This
successful training also highlights the potential for further
improvements. By increasing the size and diversity of the
dataset in future iterations, the models could generalize even
better to broader scenarios and more complex queries, making
them more versatile and robust for real-world applications.



B. Ablation Studies

We conducted several ablation studies to evaluate the impact
of different components of our system and to test its robustness
in handling various scenarios. One of the key findings was
the effect of removing the RAG data. Without the RAG
data, the model generates very generic information, which,
as previously mentioned, was intentionally designed to prevent
hallucination and avoid confusing the user. In future iterations,
we could aim to have the model explicitly say I don’t
know” or ”I don’t have the information” when RAG data
is unavailable. However, this presents its own challenges, as
training LLMs to consistently admit knowledge gaps without
over-complicating user interactions is a significant research
area in itself.

Another ablation study focused on omitting price and oper-
ating hours information from the prompt. Without this input,
the model appropriately refrains from providing these details
in its responses. This behavior is desirable, as it ensures that
the model does not provide unnecessary information. We also
tested the system with completely unknown destinations, such
as "Monkey City.” The TripAdvisor API was still able to return
results without crashing, which demonstrates the system’s
flexibility to handle unexpected inputs and its capability to
adapt to new or previously unknown locations. This flexibility
is crucial for future-proofing the model, as it allows it to
work with new destinations or dynamically emerging data
without requiring extensive retraining. These ablation studies
highlight the robustness of our design and the effectiveness
of integrating RAG for enhancing response quality while
maintaining system stability.

VI. POTENTIAL CHALLENGES AND MITIGATION
STRATEGIES

One of the challenges we anticipate in developing VentureAl
is inconsistent model grammar, where unintended symbols
appear in generated responses. Such issues can detract from
the user experience and make outputs harder to interpret. A
larger dataset will likely assist with dealing with this issue, as
the model will have more references for what correct grammar
should look like. The model seems to train fully on the current
dataset, with extra epochs not providing as much information
as they could be with a larger dataset.

Another challenge is the occurrence of occasionally in-
complete responses, where the model stops generating pre-
maturely. While reprompting often resolves the issue, this
behavior can interrupt user workflows and create inconsistency
in interactions. To address this, we will fine-tune the model
with an emphasis on handling longer sequences and proper
completion, using datasets with clear start and end points for
tasks. Additionally, we can implement a mechanism to detect
incomplete responses dynamically and automatically reprompt
the model internally, presenting a seamless experience for the
user without requiring manual intervention.

A significant logistical challenge is dataset generation,
which, while easier with LLMs, still requires time and finan-
cial resources. Datasets manually curated by human annotators

are costly and time-intensive. Generating datasets with another
LLM still involves operational costs, such as API usage or
computational resources for fine-tuned models. Given our
limited budget as students, we need to carefully balance dataset
quality with resource constraints.

VII. CONCLUSION

Our proposal for Venture Al focuses on creating a one stop
shop for all the travel planning needs that a person could
want, while also maintaining the flexibility and ease of use
that people love to use LLMs for in the first place. Currently,
fully planning for a trip often requires switching between
multiple apps and websites, making the process disjointed and
inefficient. With this application, we are addressing the com-
plexity and time-consuming nature of current travel planning
tools, which often require users to manually search for flights,
accommodations, activities, and local services.

By integrating strong fine-tuned open source LLMs with
various APIs from different online sources to stay up to date on
current flight and hotel prices, we can ensure that we provide
accurate information to users of the application along with the
rest of the LLMs output. The finished version of this project
could be a baseline for further future development, and we
would love to be able to use our own application to plan our
future trips around the world. Working through this project
would allow us to gain experience in both fine tuning state of
the art LLMs, working on a user application, and seeing the
intersection of these two very key sections of computer science
development. Beyond the immediate technical challenges, this
project will help us refine our skills in handling large-scale
data integration and model optimization, both of which are
essential in building scalable Al-driven applications. These are
key in the modern workplace, and will help us with our future
career goals.
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